

European Committee of Manufacturers of Electrical Machines and Power Electronics

02nd
CEMEP CONFERENCE

7th and 8th July 2022 in Milan, Italy

CEMEP sustainable products, systems & services

by bringing companies technology & people together

Embracing technology **Embracing ambition**

AGORIA

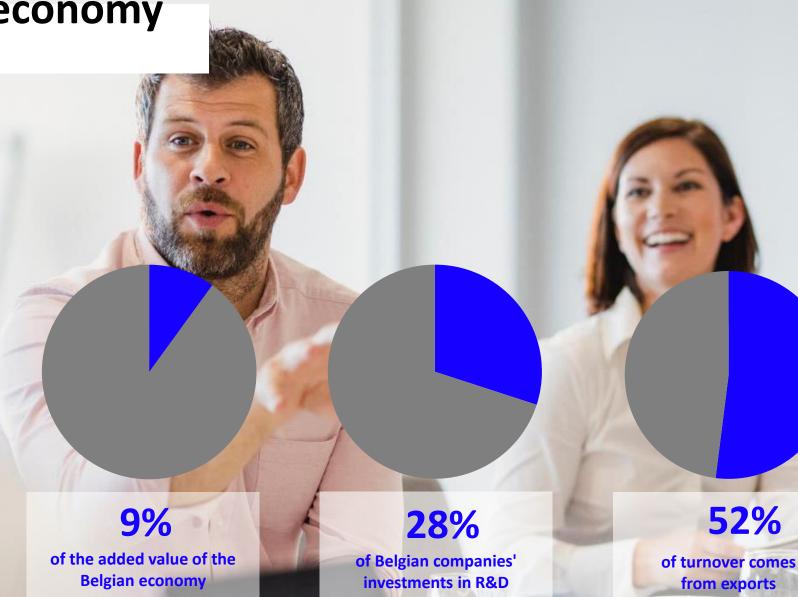
The bridge between the business of our members and technological progress

Our mission: to inform, inspire and connect people and companies

- Connecting and creating partnerships for the benefit of every sector individually and of society as a whole.
- Providing expertise tailored to the needs and specific requirements of each member company.
- Representing the social and economic interests to build an innovative and future-oriented Belgium together.

THE TECHNOLOGY INDUSTRY IN BELGIUM

Engine of our economy


•••

2019 € 132,5

billion (turnover)

2020 € 128

billion (turnover estimated)

Divided into **59** business groups

BUILDING TECHNOLOGIES

Office & warehouse equipment Windows, doors and facades Lifts
Lighting
Home Automation
Individual Heating (CIV)
Heating, ventilation & cooling
Smart Building

ENERGY TECHNOLOGY

Multi-Energy

Metal-Alliance.be

MANUFACTURING & PROCESS TECHNOLOGY

Gears and Transmissions
Compressors
Textile Machinery
Machine Construction & Components
Pumps & Valves
Industrial Ovens
Industrial Cooling
Food Equipment
Machines for the food industry, packaging and
pharmaceutical industries
Industrial Automatisation

SAFETY, SECURITY & DEFENCE

Defence technology Defence Equipment & Services Agoria Fire Technologies Agoria Security Technology & Solutions

CO-CREATION, CONTACTING & MATERIALS

Material Solutions
Non ferrous metals
Foundries
Metal Oroducts
Plastics Processing
Composites
Subcontracting
Additive Manufacturing
Contracting & maintenance
Technical Project Management and Assistance
Innovation, Design & Engineering Services
Assembly and Cranes

TRANSPORT & MOBILITY TECHNOLOGIES & SOLUTIONS

Commercial Vehicles & automotive suppliers
Smart Railway Solutions
Shipping Technologies
Smart & Sustainable Mobility
Bicycles and accessories
Agricultural & horticultural machinery and breeding equipment
Civil engineering machinery

AEROSPACE TECHNOLOGIES & SOLUTIONS

Aerospace Agoria FLAG (Flemish Aerospace Group) Aeronautic platform technologies Space assemblies and technologies

DIGITAL INDUSTRIES

Data centers
Digital Public Sector
Analytics & Information Management
Cloud & Datacenters
Geo Business & Drones
Mobile business
Information Security
Smart Cities
Digital Value and Agility
Digital Skills & HR
Reprobel/Auvibel, POS-systems

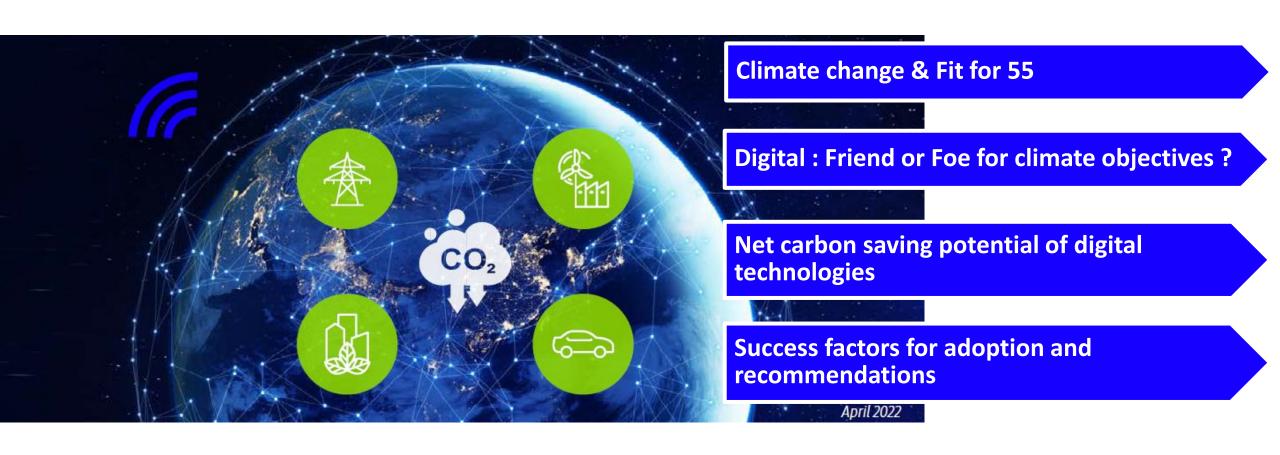
TELECOM INDUSTRIES

Investissements et infrastructures Telecom et consommateur Économie et société digitales

Digital4Climate

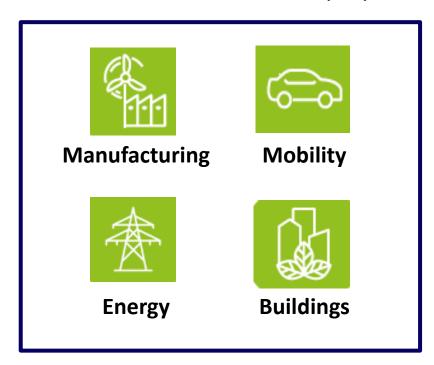
How digital technologies can contribute to reduce carbon emissions in Belgium

Conducted by



Embracing technology Embracing ambition

Why this Digital4Climate study?



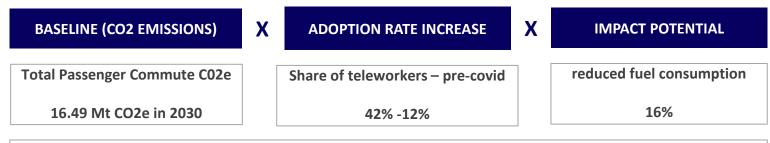
Methodology

The study is conducted by Accenture. The methodology is based on the global GeSI study "SMARTer2030", which Accenture conducted in 2015 in preparation of the 21st UN Climate Conference in Paris.

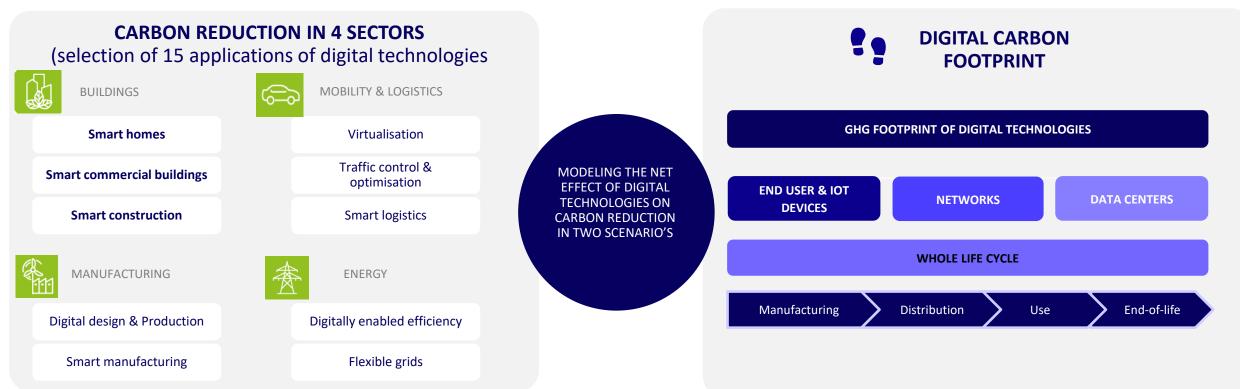
FOUR SECTORS

15 applications of digital technologies selected across the **four most carbon-intensive sectors (83%)**

TWO SCENARIOS



Digital adoption: The pace of digital technology adoption in Belgium is progressing as expected, which entails a sharp increase in adoption


Accelerated digital adoption: The pace of adoption, dissemination and use of digital technologies in Belgium is picking up significantly with appropriate policy incentives

CALCULATION METHODOLOGY (Ex: telework)

=> Total CO2e reduction potential in 2030 = 0,78 less MT CO2e

Methodology

SUPPLEMENTED WITH RECOMMENDATIONS BASED ON 20 CORPORATE INTERVIEWS

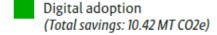


SECTOR	USE CASE	I FVFR (15)	BASELINE (MT CO2e, 2030)	ADOPTION RATE			IMPACT POTENTIAL (emission reduction)	CARBON REDUCTION POTENTIAL (MTCO2e, by 2030)	
				2020	_	2030 accel dig adopt		Digital adopt.	Accelerated dig adoption
BUILDING	Smart homes	BMS residential	17,27	17%	61%	86%	11%	0,81	1,27
		Behavioral impact of smart meters	17,27	3%	78%	100%	3%	0,39	0,50
	Smart commercial buildings	BMS commercial	7,67	20%	54%	60%	28%	0,73	0,84
	Construction	BIM	35,11	40%	81%	89%	7%	0,98	1,18
MOBILITY	Virtualization	E-Work	16,49	12%	42%	49%	16%	0,77	0,96
	Traffic control & optimization	Smart traffic lights & signs	6,32	35%	100%	112%	16%	0,63	0,75
	Smart logistics	Route and freight optimization	9,97	9%	25%	37%	37%	0,58	1,03
		Rail freight modal substitution and digitalization	9,97	0%	74%	90%	8%	0,55	0,68
		Inland navigation modal substitution and automation	9,97	0%	57%	74%	6%	0,36	0,46
ENERGY	Digitally enabled efficiency	Efficiency of renewable energy production	9,94	0%	61%	74%	7%	0,44	0,53
	Flexible grid	Storage & flexible consumption	9,94	27%	70%	79%	18%	0,76	0,92
MANUFACTU RING	Digital design and production	Process simulation (process industry)	28,3	6%	51%	62%	9%	1,15	1,44
		Virtual prototyping and twinning (product industry)	6,03	2%	56%	67%	9%	0,28	0,34
	Smart manufacturing	Manufacturing automation	13,81	53%	95%	100%	25%	1,46	12 ^{1,64}
		Predictive maintenance	13,81	15%	60%	80%	9%	0,55	0,80

Key results

CARBON REDUCTION

(MT carbon savings in 2030, % of 2019 sector emissions*)


5 - 10

The carbon savings potential enabled by digital is about 5 x larger than the digital footprint (by 2030).

The carbon savings amount for 10 % of the total CO2e emissions (or about 30% of 2030 Belgian climate objectives)

Carbon reduction potential per sector

Accelerated digital adoption (Total savings: 13.32 MT CO2e)

Digital technologies that unlock process efficiency

The key technologies considered are Building Management System and Building Information Modeling.

The key drivers are reducing the need for transport and optimizing the existing modalities.

Digital technologies catalyzing the shift to renewables in the energy sector

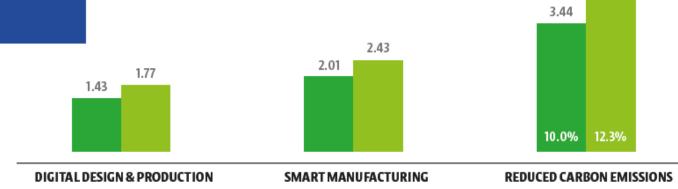
Manufacturing: a critical sector for success

Highest CO2e reduction potential. 29% of Belgian CO2 emissions (33.5MT)

Highest socio-economic impact: 545.000 jobs & 12.5% Belgian GDP

4.21

Manufacturing


Digital technologies that unlock process efficiency will help saving 3.4 to 4.2 MT CO2e, or 10-12.3% of the total sector

emissions.

CARBON REDUCTION - MANUFACTURING (MT carbon savings in 2030)

Digital adoption

Accelerated digital adoption

Digital is optimizing end-to-end manufacturing

INCREASE EFFICIENCY THROUGH SIMULATIONS/VIRTUAL PROTOTYPE

REDUCE ENERGY CONSUMPTION THROUGH DIGITAL TECH AND IOT

Digital Design & Production

L 1.1: Process Simulation (process industry)

L1.2: Virtual prototyping and twinning (product industry)

Smart Manufacturing

L 2.1: Manufacturing Automation

L2.2: Predictive Maintenance

Agoria programs
Factory of the Future & DigiCoach programs

Vintecc (CNHi) – Virtual prototyping and twinning

VINTECC 2021

Field of expertise

- · Virtual commissioning
- Matlab / Simulink
- Sensor technology
- Pointcloud processing
- Software middle layers
- Dual

The future of machines is

Smart

Virtual

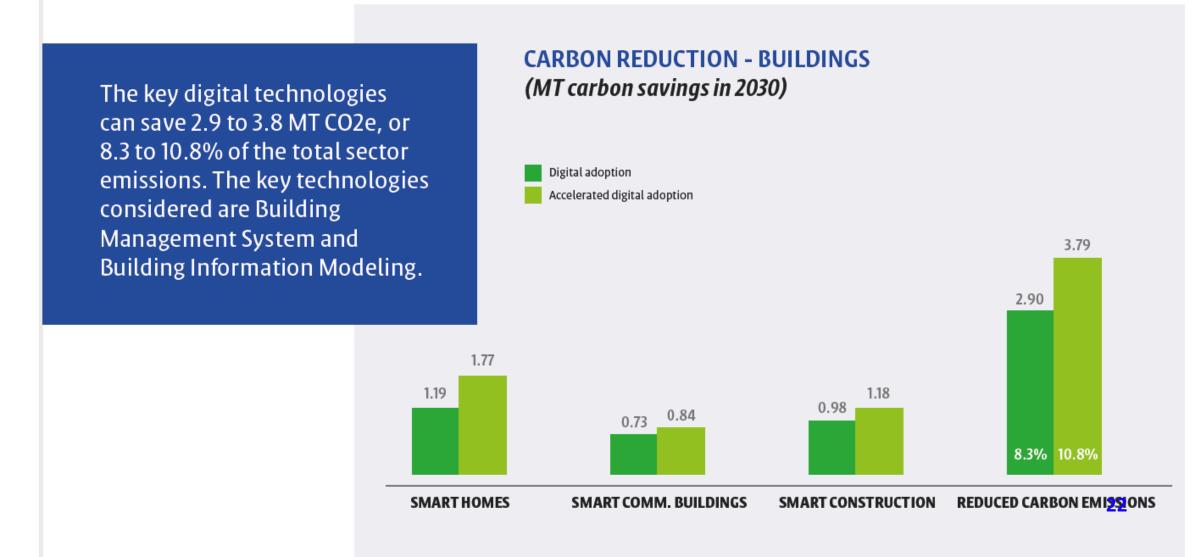
Connected

Artificial

Takeda - Process simulation

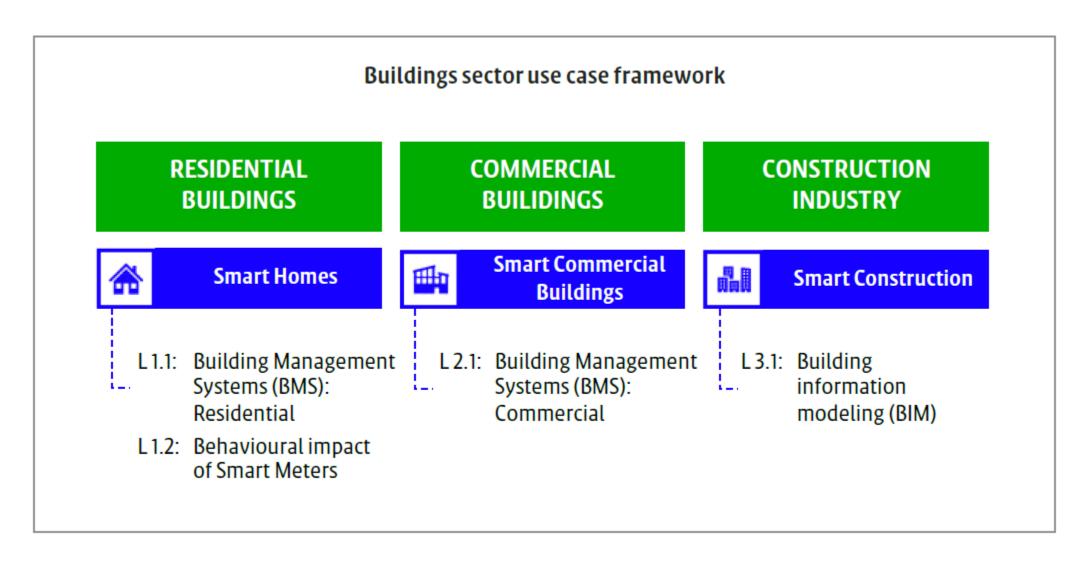
Alvance – Predictive maintenance

<u>Link video</u>


Buildings & construction: Highest climate impact

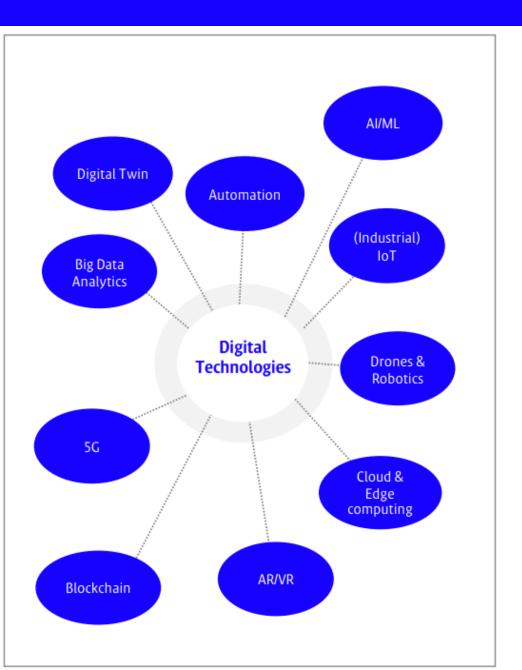
Highest climate impact: 33% of Belgian CO2 emissions (38.5MT)

High socio-economic impact: 260.000 jobs & 5% Belgian GDP



Buildings & construction

Use case framework for Buildings & construction



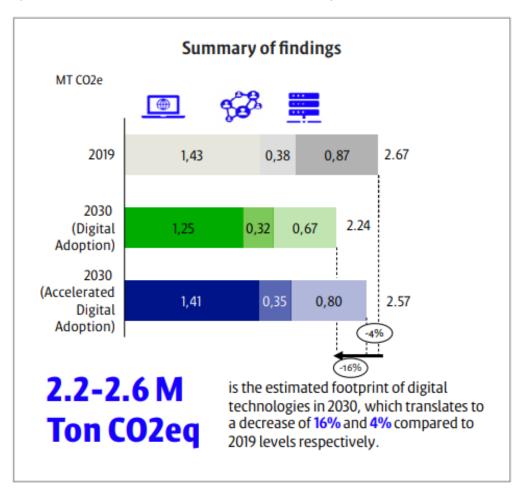
Vinci Energies – BMS commercial

Befimmo - BIM

Exploiting the full potential of Digital

STUDY

Focus on optimization through proven technology


NEW BUSINESS MODELS

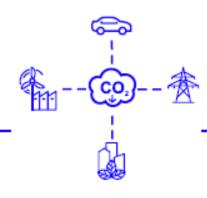
- SHARING economy
- CIRCULAR ecosystems
- As a SERVICE business models

Digital Footprint

(macro-economic calculation)

Green ICT

- Networks: 5G is 10x more energy efficient than 4G
- Cloud adoption by enterprise: 65% energy


 ¹
 ²
 ³

Conclusions

x5

The carbon savings
enabled by 15
applications of digital
technologies is about 5
x larger than the total
digital footprint by 2030.

10%

The total carbon reduction in 4 sectors represents roughly 10% or more of Belgian carbon emissions over the next 10 years or about 30% of the climate target.

An accelerated adoption of digital technologies will lead to more than proportional carbon savings.

As evidenced by the 20 best practices, companies embracing this twin transition – digital & green – are adopting digital solutions with proven impact.

Policy Recommendations

A Digital 4 Climate Innovation Program

Stimulate technology adoption & new business models

An investment friendly regulation environment

Ex: dynamic pricing energy system; data spaces for energy & mobility

Governments leading by example

Ex: Intelligent transport systems for mobility, Building Management System for public offices

Boost digital skills for the green transition

Ex: Twin transition part of training for unemployed, higher education or lifelong learning upskilling

Read the full study here: www.agoria.be/digital4climate

Thanks for the attention!

Alain Wayenberg
Alain.wayenberg@agoria.be